évaluation de la qualité de l'air

dans l'environnement de l'Unité de Valorisation Énergétique Arc-en-Ciel

campagne 2016

février 2017

sommaire

contributions

Coordination de l'étude - Rédaction : Corentin Lemaire, Mise en page : Bérangère Poussin, Exploitation du matériel de mesure : Arnaud Tricoire et équipe Métrologie, Validation : François Ducroz / Arnaud Rebours.

conditions de diffusion

Air Pays de la Loire est l'organisme agréé pour assurer la surveillance de la qualité de l'air dans la région des pays de la Loire, au titre de l'article L. 221-3 du code l'environnement, précisé par l'arrêté du 1er août 2016 pris par le Ministère chargé de l'Écologie.

À ce titre et compte tenu de ses statuts, Air Pays de la Loire est garant de la transparence de l'information sur les résultats des mesures et les rapports d'études produits selon les règles suivantes:

Air Pays de la Loire, réserve un droit d'accès au public aux résultats des mesures recueillies et rapports produits dans le cadre de commandes passées par des tiers. Ces derniers en sont destinataires préalablement. Air Pays de la Loire a la faculté de les diffuser selon les modalités de son choix : document papier, communiqué, résumé dans ses publications, mise en ligne sur son site Internet www.airpl.org, etc...

Air Pays de la Loire ne peut en aucune façon être tenu responsable des interprétations et travaux intellectuels, publications diverses ou de toute œuvre utilisant ses mesures et ses rapports d'études pour lesquels Air Pays de la Loire n'aura pas donné d'accord préalable.

remerciements

Nous remercions la mairie de Couëron et la mairie de Saint-Jean-de-Boiseau pour nous avoir permis d'installer notre matériel.

synthèse

contexte et objectifs ----- une surveillance réglementée pour évaluer l'impact d'Arc-en-Ciel

Depuis la publication des arrêtés préfectoraux du 2 juillet 1992 et du 14 avril 2003, une surveillance annuelle de la qualité de l'air autour de l'établissement est exigée. Air Pays de la Loire a été retenu pour réaliser, depuis 1997, une surveillance annuelle de la qualité de l'air dans l'environnement d'Arc-en-Ciel.

Deux types d'indicateurs sont ciblés :

- les polluants atmosphériques, qui comprennent les métaux lourds, le chlorure d'hydrogène HCl, le dioxyde d'azote NO₂, le dioxyde de soufre SO₂, le monoxyde de carbone CO ainsi que les particules fines PM10 :
- les retombées atmosphériques, qui contiennent notamment les dioxines et furanes et les métaux lourds.

Cette surveillance annuelle a pour but:

- de comparer les niveaux de pollution par rapport aux valeurs réglementaires et de référence,
- d'évaluer l'influence des émissions d'Arc-en-Ciel sur la qualité de l'air environnant, en comparant notamment les mesures à celles réalisées sur d'autres sites, non influencés par l'établissement.

moyens — une campagne d'évaluation aux techniques de mesures normalisées

une campagne de mesure sur 9 semaines

En 2016, la période de prélèvements s'est étendue du 3 août au 6 octobre. Le fonctionnement de l'installation était alors normal.

deux types d'indicateurs pour plusieurs polluants :

Le dispositif d'étude mis en œuvre par Air Pays de la Loire comprend la mesure :

- des dépôts atmosphériques par la collecte et l'analyse des eaux de pluie. Il s'agit de quantifier :
 - ----- 9 métaux (As, Ni, Cd, Pb, Zn, Cu, Hg, Mn, Cr);
 - ---- les ions chlorure, pour tracer l'acide chlorhydrique;
 - ---- les dioxines et les furanes (17 congénères toxiques).
- des concentrations atmosphériques, par la pose de systèmes aspirant l'air ambiant au travers de filtres qui sont analysés en laboratoire pour mesurer:
 - --- les chlorures particulaires (embruns marins) et l'acide chlorhydrique,
 - ---- les métaux lourds en suspension dans l'air.
- des concentrations atmosphériques des polluants suivis en continu par Air Pays de la Loire : dioxyde d'azote, monoxyde de carbone, dioxyde de soufre et particules fines.

résultats — des niveaux de polluants qui respectent les valeurs réglementaires et de référence

dioxines et furanes

Les niveaux de ces polluants autour de l'incinérateur (autour de 1 pg d'équivalent toxique total par m² et par jour d'exposition) sont sensiblement similaires à ceux relevés sur le site rural de référence non influencé par Arc-en-Ciel, en Vendée.

Par ailleurs, les spectres (participation de chaque composé de la famille des dioxines et furanes à la toxicité totale) ne sont pas corrélés à ceux relevés en sortie de l'incinérateur, suggérant une absence d'influence décelable de celui-ci.

Les valeurs relevées s'inscrivent dans un historique de faible présence de ces composés, avec des niveaux similaires à ceux de 2005, 2006, 2009, 2012, 2014 et 2015.

Niveau du polluant : faible 😊 Pas d'influence d'Arc-en-Ciel

métaux lourds, dans l'air et dans les retombées

Les niveaux de métaux dans les eaux de pluies sont comparables aux niveaux habituellement relevés en zone rurale et ne s'écartent pas des niveaux mesurés les autres années. Les mesures des métaux en suspension dans l'air sont quant à elles homogènes entre les trois sites, comparables aux années précédentes et, concernant les composés réglementés (Arsenic, Cadmium, Plomb et Nickel), les valeurs relevées sont très en dessous des seuils et comparables aux niveaux relevés sur le site de fond urbain nantais (cimetière de la Bouteillerie).

Par ailleurs, l'évolution des taux relevés au cours de la campagne n'est pas corrélée avec l'exposition des sites aux vents venant de l'UVE, excluant une influence décelable de celui-ci sur les concentrations de l'air en métaux lourds.

Niveau du polluant : faible 😊 Pas d'influence d'Arc-en-Ciel

chlorures

Les niveaux en chlorures particulaires et en ions chlorure dans l'air sont également dans le prolongement des valeurs relevées les années précédentes.

On constate en particulier une bonne corrélation des niveaux de chlorures particulaires avec les vents d'ouest, signe d'apport d'embruns marins par ces vents. L'acide chlorhydrique quant à lui apparaît mieux lors d'épisodes de vents faibles, pendant lesquels il est produit par la dégradation des aérosols marins.

Aucune causalité ne peut être établie ici entre l'activité d'Arc-en-Ciel et les concentrations en acide chlorhydrique, pourtant marqueur de l'incinération d'ordures ménagères.

Niveau du polluant : faible 🕒 Pas d'influence d'Arc-en-Ciel

polluants suivis en continu par Air Pays de la Loire

Les niveaux de NO₂ prennent des valeurs intermédiaires entre celles relevées à Nantes et celles relevées en milieu rural et les niveaux de PM10 sont homogènes aux niveaux relevés sur la région (dans un contexte de pollution importée, source de dépassement des valeurs réglementaires).

Le SO₃ et le CO ne sont détectés qu'à l'état de trace.

Dans tous les cas les roses de pollution ne pointent pas le secteur d'Arc-en-Ciel mais révèlent plutôt l'influence de l'agglomération nantaise.

Niveau du polluant : faible 💮 Pas d'influence d'Arc-en-Ciel

conclusion ---- pas d'influence d'Arc-en-Ciel

Les teneurs en polluants enregistrées dans l'environnement d'Arc-en-Ciel sont représentatives d'une zone périurbaine non influencée par l'établissement.

introduction

située sur la commune de Couëron, le site d'Arc-en-Ciel assure le traitement des quelques 300 000 tonnes de déchets produits annuellement par l'agglomération Nantaise. Parmi ceux-ci, près d'un tiers (entre 100 000 et 110 000 tonnes, représentant 98 % des seuls déchets ménagers) sont valorisés afin de produire de l'énergie (environ 19 GWh par an) ou des matériaux tels que des remblais ou de la sous-couche routière.

L'activité d'incinération est encadrée par les arrêtés préfectoraux du 2 juillet 1992 et du 14 avril 2003 qui imposent une surveillance annuelle de la qualité de l'air autour de l'établissement.

Depuis 1997, Arc-en-Ciel a confié cette mission à Air Pays de la Loire qui a mis en place un dispositif de surveillance des polluants atmosphériques suivants : métaux lourds, chlorure d'hydrogène, et dioxyde d'azote. En 2003, à cette surveillance, s'est rajoutée la mesure des dépôts totaux en dioxines et furanes dans l'environnement d'Arc-en-Ciel et sur deux autres sites non influencés par l'établissement. Par ailleurs, depuis 2009, un laboratoire mobile permet de mesurer en continu les oxydes d'azote, le dioxyde de soufre, le monoxyde de carbone et les particules fines PM10. Il est positionné de manière à discriminer l'influence potentielle de l'établissement Arc-en-Ciel par rapport à d'autres sources de polluants.

Ce rapport rassemble les résultats de la campagne de mesure qui s'est déroulée du 3 août au 6 octobre 2016. Il présente successivement:

- le dispositif de mesure mis en œuvre ;
- les conditions météorologiques dans lesquelles s'est déroulée la campagne ;
- les résultats de mesure et leur interprétation en termes de suivi réglementaire et de contribution des activités d'Arc-en-Ciel sur les concentrations enregistrées. D'abord pour les mesures de retombées atmosphériques, puis pour les mesures de concentrations dans l'air.

le dispositif de surveillance

Un dispositif complet a été mis en œuvre pour la surveillance de la qualité de l'air dans l'environnement de l'Unité de Valorisation Énergétique. Il permet d'appréhender deux indicateurs de la pollution atmosphérique:

- les concentrations atmosphériques, via des mesures directement dans l'air ;
- les retombées atmosphériques sous forme de dépôts, via la collecte et l'analyse des eaux de pluie.

Plusieurs polluants (9 métaux, chlorure d'hydrogène, chlorures particulaires, oxydes d'azote, dioxyde de soufre, particules PM10, monoxyde de carbone, dioxines et furanes) ont été mesurés dans l'air et/ou dans les eaux de pluie à l'aide de différentes techniques de collecte et d'analyse normalisées.

Le dispositif est composé de 5 sites de mesure :

- 3 situés dans l'environnement immédiat d'Arc-en-Ciel;
- 2 non influencés, pour comparaison.

L'étude est de plus complétée par les mesures réalisées par Air Pays de la Loire dans le cadre de sa mission de surveillance pérenne de la qualité de l'air.

cinq sites de mesure équipés pour la campagne

trois sites de prélèvement localisés dans les zones de retombées maximales

Ces trois sites ont été équipés de collecteurs d'eaux de pluie pour analyser les retombées en métaux, en dioxines et en furanes, ainsi que d'un dispositif (appelé Partisol) permettant de prélever, des échantillons d'air, à raison d'un par semaine tout au long de la campagne. Ces échantillons sont ensuite analysés en laboratoire pour mesurer les concentrations atmosphériques en métaux et en chlorures. L'école de la Métairie a par ailleurs accueilli un camion laboratoire afin de mesurer les polluants surveillés par le réseau permanent de stations d'Air Pays de la Loire (dioxyde d'azote, PM10, monoxyde de carbone et dioxyde souffre).



Figure 1 : localisation des trois sites équipés par Air Pays de la Loire pour mesurer l'influence de l'UVE sur son environnement (en bleu l'UVE, en violet les sites équipés de jauges de récupération des eaux de pluies et de filtres pour les métaux et le chlorures, en rouge, le site de l'école de la Métairie, équipé comme les deux précédents et accueillant de plus un camion laboratoire (pour le NO., le SO., les PM10 et le CO)

Nº Site	Nom	Adresse	Distance à l'UVE
1	École de la Métairie	Rue de Trevellec, Couëron	1,1 km au nord nord-est
2	Couëron	Près du stade des Ardillets	0,9 km à l'ouest nord-ouest
3	Saint-Jean-de- Boiseau	Cimetière	1,8 km au sud-ouest

Tableau 1 : caractéristiques des 3 sites de mesure dans l'environnement d'Arc-en-Ciel

Photo 1 : camion laboratoire sur le site de la Métairie

Photo 2 : partisol au cimetière de Saint-Jean-de-Boiseau

Cimetière

de la

(niveau de fond urbain), Nantes:

Bouteillerie

des sites non influencés par Arc-en-Ciel

pour les métaux et les polluants réglementés

Afin de comparer les résultats des mesures réalisées dans l'environnement de l'Unité de valorisation énergétique (UVE), Air Pays de la Loire s'appuie sur son réseau de stations fixes. Cellesci surveillent, en continu et tout au long de l'année, les différents polluants qui ont également été mesurés par le camion installé à l'école de la Métairie pendant la campagne.

NO, PM10, Métaux Saint-Étienne-de-Montluc: SO, NO, PM10 Frossay: SO, École de la Métairie Nantes Couëron Arc-en-ciel Boulevard Victor-Hugo (niveau Saint-Jean-de-Boiseau de proximité du trafic routier), Nante Pou CO Bouaye: 0

Figure 2 : localisation des différentes stations du réseau Air Pays de la Loire dont les résultats ont été utilisés pour comparer les mesures du camion laboratoire à des sites non influencés par l'UVE. En bleu foncé, violet et rouge, voir Figure 1, en bleu ciel les stations du réseau, avec les polluants mesurés sur chacune d'entre elles, en vert le site de la Chauvinère, où a été installée une jauge de récupération d'eaux pluviales afin de déterminer le niveau de fond en dioxines et furanes

pour les dioxines et les furanes

Les résultats d'analyse des trois jauges de récupération d'eaux pluviales placées autour d'Arc-en-Ciel seront comparés à ceux de jauges placées hors de l'influence du site, à Nantes et en Vendée.

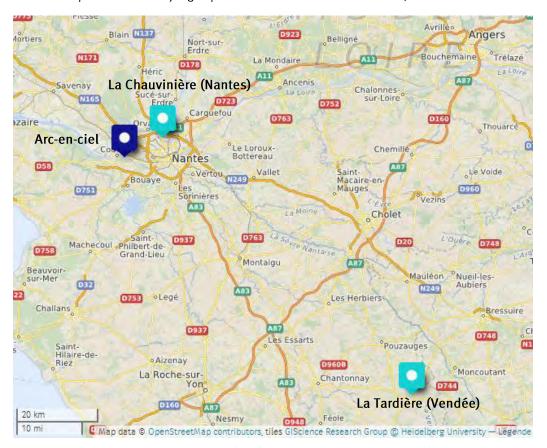


Figure 3 : localisation des jauges de récupérations d'eaux de pluies utilisées pour mesurer les retombées en dioxines et furanes dans les zones non influencées par Arc-en-Ciel (en bleu clair les jauges, en bleu foncé Arc-en-Ciel)

Photo 3 : jauges de récupération des eaux de pluies (à gauche pour l'analyse des dioxines et les furanes, à droite pour les métaux)

deux types d'indicateurs de la pollution atmosphérique

les concentrations atmosphériques

Sur trois sites (Métairie, Couëron et Saint-Jean-de-Boiseau), les concentrations dans l'air des polluants suivants ont été mesurées :

- 9 métaux lourds visés par l'arrêté ministériel du 25 janvier 1991 relatif aux installations d'incinération de résidus urbains : arsenic (As), cadmium (Cd), chrome (Cr), cuivre (Cu), manganèse (Mn), mercure (Hg), nickel (Ni), plomb (Pb). En complément, le zinc (Zn) a également été analysé pour son potentiel supposé à tracer les émissions des usines d'incinération d'ordures ménagères ;
- les chlorures en phase aérosols (sels de mer) et le chlorure d'hydrogène (HCl), sous forme gazeuse ;
- les oxydes d'azote NO_x, le dioxyde de soufre SO₂, les particules fines PM10 ainsi que le monoxyde de carbone CO ont été mesurés sur le site de l'école de la Métairie.

Le réseau de stations déployées par Air Pays de la Loire pour ses missions de surveillance des polluants réglementés permet également de déterminer un niveau de fond en NO_x et en PM10 (au cimetière de la Bouteillerie à Nantes et à Saint-Étienne-de-Montluc), en SO_x (à Saint-Étienne-de-Montluc et à Frossay), ainsi qu'un niveau de CO proche des axes routiers (grâce à la station située Boulevard Victor-Hugo à Nantes). La station du cimetière de la Bouteillerie dispose également d'un analyseur de métaux.

Les prélèvements en métaux et chlorures sont réalisés sur des filtres relevés toutes les semaines, les données correspondent donc à des moyennes hebdomadaires. Les concentrations des autres polluants, mesurées automatiquement tous les quarts d'heure, sont présentées selon les standards en vigueur dans la définition des seuils réglementaires.

les retombées atmosphériques

Conformément aux arrêtés préfectoraux du 9 décembre 1998 et du 14 avril 2003, une collecte des dépôts totaux est effectuée sur les trois sites (Métairie, Couëron et Saint-Jean-de-Boiseau) pour une analyse en laboratoire des métaux, des ions chlorure et sodium et des dioxines et furanes.

Des collectes de dépôts pour l'analyse des dioxines et furanes ont également été réalisées sur les sites non influencés de la Chauvinière (Nantes) et de la Tardière (Vendée).

Une description complète des techniques de collecte et d'analyse ainsi que des normes utilisées est disponible en annexe 2.

les périodes de mesure

Cette campagne d'évaluation s'est déroulée **du 3 août au 6 octobre**. Le tableau 2 présente les périodes de prélèvement des métaux lourds et du chlorure d'hydrogène dans l'air. Il est à noter qu'une défaillance technique a empêché la collecte sur filtres sur les 3^{ème} et 4^{ème} semaines, la campagne, initialement prévue du 3 août au 22 septembre, a donc été prolongée de deux semaines. Les périodes de mesure des retombées atmosphériques sont résumées dans le tableau 3.

Période	Date début	Date fin
S1	03/08/2016	10/08/2016
S ₂	10/08/2016	17/08/2016
S ₅	01/09/2016	07/09/2016
S6	07/09/2016	15/09/2016
S ₇	15/09/2016	22/09/2016
S8	22/09/2016	29/09/2016
S9	29/09/2016	06/10/2016

Tableau 2: périodes de prélèvement pour la mesure des métaux lourds et des chlorures dans l'air, sur les 3 sites (école de la Métairie, Couëron et Saint-Jean-de-Boiseau)

Site	Date début	Date fin
Sur les 3 sites de l'environnement de l'UVE	03/08/2016	06/10/2016
Site de la Chauvinière, Nantes	04/08/2016	06/10/2016
Site de la Tardière, Vendée	09/08/2016	04/10/2016

Tableau 3 : périodes d'exposition des collecteurs d'eaux de pluie

récapitulatif

Le tableau suivant recense pour l'ensemble des sites de mesure, le type de polluant analysé ainsi que les durées d'échantillonnage.

		concen	trations atmosp	hériques	retombées atmosphériques		
nom du site	typologie	métaux [*]	HCl et chlorures particulaires	NO ₂ , SO ₂ , CO, PM10	dioxines et furanes	métaux [*]	ions chlorures et sodium
Durée d'exposition		Hebdomadaire (7 échantillons par site)		Quart- horaire	Sur toute la campagne		gne
École de la Métairie	industriel	Х	х	х	х	х	х
Couëron	industriel	Х	Х		Х	Х	Х
Saint-Jean- de-Boiseau	industriel	Х	Х		Х	Х	Х
La Chauvinière	urbain (non influencé)				Х		
La Tardière	rural (non influencé)				Х		
Cimetière de la Bouteillerie	urbain (non influencé	Х		Х			
Autres stations	non influencé			Х			

Tableau 4 : typologie des sites, polluants étudiés et durée des prélèvements

^{*}As, Cd, Cr, Cu, Mn, Hg, Ni, Pb, Zn

situation météorologique

précipitations, températures, insolation¹

La campagne s'est déroulée dans un contexte météorologique variable en termes de précipitations et de température. Ainsi, si certaines journées ont connu des forts écarts aux normales de saison pour ces variables, la moyenne sur toute la durée de la campagne s'écarte peu de celles-ci c'est-à-dire que les températures sont plutôt douces, l'ensoleillement est encore abondant et les précipitations se font rares.

vents

La vitesse et la direction des vents sont des paramètres importants à prendre en compte pour comprendre la dispersion des polluants dans l'environnement d'une source. Grâce aux données de la station Météo France de Nantes-Atlantique, il est possible de retracer les conditions météorologiques durant la campagne. Le tableau ci-dessous présente, pour chacune des semaines de prélèvement, la direction des vents ainsi que le nombre d'heures hebdomadaires au cours desquelles, les sites ont été sous les vents de l'établissement Arc-en-Ciel. À noter que des secteurs de faible écart angulaire (+/- 10 °) sont considérés afin de respecter le caractère directionnel du panache.

		Nombre d'heures d'influence			
		École de la Métairie	Couëron	Saint-Jean- de-Boiseau	Roses des vents hebdomadaires
période	dates	200°-220°	90°-110°	30°-50°	
S1	du 03/08/2016 au 10/08/2016	5	O	5	Rose des vents à Nantes au 3 au 10 aout 2018 0 dég
S2	du 10/08/2016 au 17/08/2016	0	3	43	Rose des vents à Names du 10 au 17 août 2016 0 dég 5 5 m/s 5

¹ Source : Bulletin Climatique Mensuel Régional, Météo France (consulté pour les mois d'août, septembre et octobre 2016)

S 3	du 17/08/2016 au 24/08/2016	12	7	O	Rose des vents à Names du 17 au 24 aout 2016 0 dég
54	du 24/08/2016 au 01/09/2016	7	0	12	Rose des vents à Nantes du 24 aout au 1er septembre 2015 0 dég
S 5	du 01/09/2016 au 07/09/2016	4	4	7	Rose des vents à Nantes du 1er au 7 septembre 2018 0 dég
56	du 07/09/2016 au 15/09/2016	14	12	1	Rose des vents à Nantes du 7 au 15 septembre 2016 0 dég

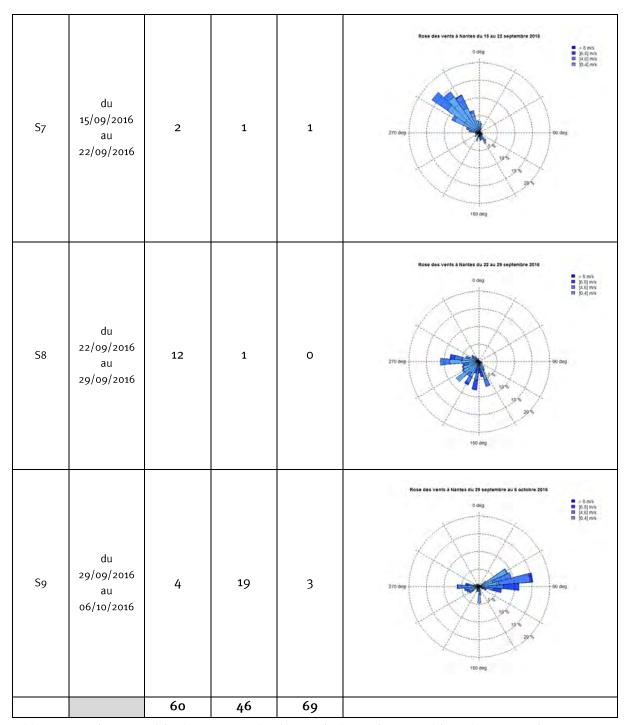


Tableau 5 : caractéristiques météorologiques et nombre d'heures d'influence d'Arc-en-Ciel durant la campagne de mesure

La répartition des vents sur l'ensemble de la campagne de mesure est présentée sur la rose des vents ci-dessous. Elle montre une prédominance des vents de secteur ouest. En revanche le détail hebdomadaire des vents montre que ceux-ci ont connu une grande variété d'origine pendant la campagne, chaque site de mesure ayant été sous les vents d'Arc-en-Ciel de manière importante pendant au moins une semaine. Pour les prélèvements sur filtres, une analyse par semaine sera donc particulièrement appropriée.

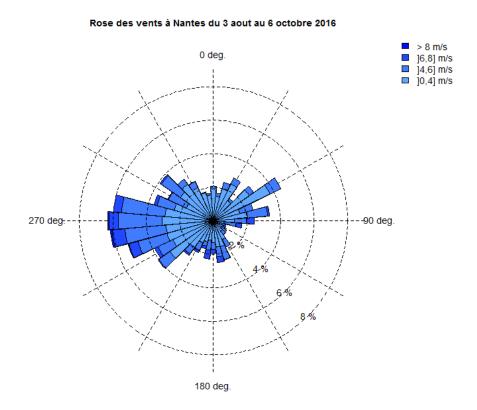


Figure 4 : rose des vents calculée sur l'ensemble de la période de mesure (station météorologique de Nantes-Atlantique)

résultats des mesures de retombées atmosphériques

mesure des dépôts de dioxines et furanes

méthodologie

Après la collecte, les échantillons d'eaux de pluies sont envoyés en laboratoire (voir annexe 6 pour les coordonnées du laboratoire) afin de mesurer leur contenu en dioxines et furanes. Cette mesure est réalisée par chromatographie en phase gazeuse à haute résolution (HRGC) suivie d'une spectrométrie de masse à haute résolution également (HRMS), et porte sur la quantification de 7 dioxines et de 10 furanes différentes, appelées des congénères.

En raison des différentes toxicités pour l'homme de ces différents congénères, il ne serait pas pertinent de comparer directement les quantités de chacun d'entre eux. C'est pourquoi l'OTAN et l'OMS ont défini des facteurs de toxicité équivalente, permettant de mettre tous ces congénères sur la même échelle en termes d'impact sanitaire. Par exemple la dioxine 1,2,3,4,7,8-Hexachloro-Dibenzo-Dioxine étant, à masse égale, 10 fois moins toxique pour l'homme que la 2,3,7,8-Tetrachloro-Dibenzo-Dioxine – qui sert de référence dans cette échelle de toxicité équivalente – la quantité (en masse) de la première dans l'échantillon sera divisée par 10 afin que les deux composés puissent être comparés. L'utilisation de ces facteurs permet par ailleurs de calculer une toxicité équivalente totale de l'échantillon en sommant les contributions des 17 composés.

De plus, les résultats sont normalisés par la durée d'exposition des jauges ainsi que par la surface de collecte dans le but de comparer différentes campagnes et différents sites entre eux.

résultats

	École de la Métairie	Stade de Couëron	Saint-Jean- de-Boiseau	La Chauvinière	La Tardière
Toxicité équivalente totale (I-TEQ) en pqeq/m²/jour	0,66	0,64	0,59	0,90	0,74

Tableau 6 : toxicité équivalente totale (NATO) sur chaque site

La principale interprétation de ces résultats est le faible écart entre les valeurs mesurées sur les sites environnant l'UVE et les sites éloignés. Faible écart d'autant plus significatif que les niveaux relevés sont eux-mêmes très faibles au regard d'autres études dans l'environnement d'UVE. Beaucoup de congénères ne dépassent d'ailleurs pas la limite de détection.

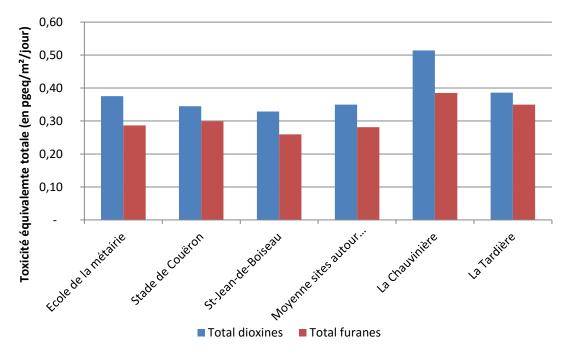


Figure 5 : toxicité équivalente des dioxines et des furanes mesurées sur chaque site

La figure 5 montre une prédominance des dioxines sur les furanes quel que soit le site de mesure. Or les rapports d'autocontrôle en sortie de cheminée de l'UVE montrent une faible proportion de dioxines dans les rejets.

L'ensemble de ces éléments montre que les niveaux en dioxines et furanes sont faibles et homogènes entre les différents sites de mesures et que l'UVE n'a pas d'influence sur les retombées atmosphériques de ces composés dans son environnement.

historique

La figure ci-après présente l'évolution des niveaux de dioxines et furanes (en pg I-TEQ/m²/j) enregistrés depuis 2003 sur les sites de Couëron, Saint-Jean-de-Boiseau, La Chauvinière et la Tardière. Pour des raisons techniques, le site de la Gendarmerie avait été transféré à l'école de la Métairie en 2010.

Les niveaux enregistrés en 2016 autour d'Arc-en-Ciel font partie des niveaux les plus faibles enregistrés depuis 10 ans, plus faibles encore que les niveaux relevés en 2015. Aucune influence de l'UVE n'ayant été établie les années précédentes, cette comparaison conforte l'absence d'influence d'Arc-en-Ciel sur les dépôts de dioxines et furanes lors de la campagne 2016.

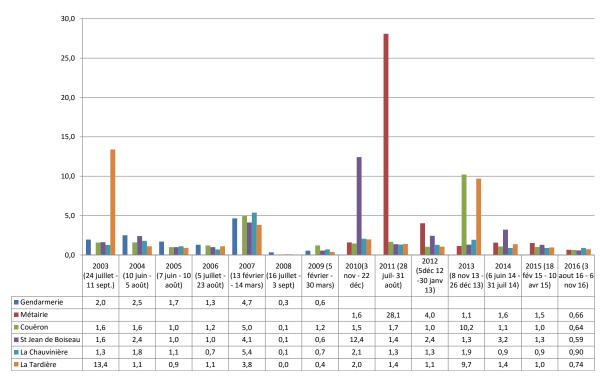


Figure 6 : évolution des retombées en dioxines et furanes autour d'Arc-en-Ciel depuis 2003

mesure des retombées totales et solubles en métaux lourds, ions chlorure et sodium

méthodologie

De la même manière que pour les dioxines et les furanes, les dépôts de métaux sont exprimés en quantité par unité de surface de collecte et par jour d'exposition. En revanche ici chaque métal fait l'objet d'une analyse propre.

résultats

La figure ci-dessous présente les résultats de mesures de retombées de métaux sur les différents sites.

Pour tous les métaux, on observe de plus fortes retombées sur le site de Couëron. Cette différence entre sites ne se retrouve pas dans les mesures de concentrations atmosphériques (voir chapitre suivant), ce qui laisse supposer que les retombées sur le site de Couëron ont lieu sous forme de particules de taille supérieure à 10µm (les collecteurs atmosphériques filtrant les particules selon leur taille).

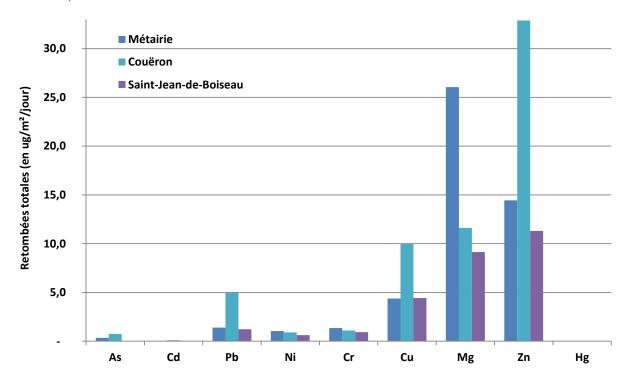


Figure 7: retombées totales en métaux lourds dans l'environnement d'Arc-en-Ciel

comparaison aux valeurs réglementaires et historique

À ce jour, il n'existe pas en France de valeurs réglementaires pour les métaux lourds présents dans les retombées atmosphériques. À l'inverse, en Allemagne (Loi du 24 juillet 2002) et en Suisse, des valeurs de référence pour les dépôts de métaux (en moyenne annuelle) sont répertoriées. Le tableau suivant présente à titre indicatif ces valeurs ainsi que des gammes de résultats de retombées totales en métaux lourds répertoriées dans des études menées en France et dans d'autres pays. Il est important de noter que les valeurs limites allemandes et suisses sont des moyennes annuelles tandis que les mesures de cette étude sont des moyennes calculées sur 9 semaines. C'est pourquoi une comparaison stricte de ces valeurs réglementaires avec celles enregistrées lors de la campagne d'étude ne peut être réalisée.

Flux de dépôt de métaux (µg/m²/j)	Zone rurale	Zone urbaine	Arc-en-Ciel 2015	Arc-en-Ciel 2016	Valeurs réglementaires allemandes et suisses
Arsenic	0,6 - 0,7	0,05 - 1,3	0,1-0,9	0,3 - 0,7	4
Cadmium	0,2 - 0,9	0,3 - 3,0	0,0 - 0 ,1	0,0 - 0 ,1	2
Chrome	1,7 – 6,7	1,8 – 17,6	0,5 - 2,2	0,9-1,3	-
Cuivre	3,5 - 9,5	2,1 – 67,9	4,9 – 9,0	4,4 - 10,0	-
Manganèse	7,2 - 14,7	8,5 – 24,6	4,6 - 31,0	9 ,1 – 26,1	-
Nickel	1,6 - 3,7	1,0 - 22,9	0,5 – 1,9	0,6 – 0,9	15
Plomb	3,3 - 10,3	0,4 – 106	1,0 - 5,8	1,2 - 5,0	100
Zinc	17,8 – 219	10 – 285	11,8 – 30,0	11,3 – 32,9	400

Tableau 7 : flux moyen de dépôt total de métaux recensés dans la littérature [16] à [26] et valeurs de référence (moyennes annuelles) en Allemagne et en Suisse

D'après ce tableau, les flux de dépôts de métaux lourds relevés en 2016 correspondent aux ordres de grandeur des niveaux habituellement enregistrés en zone rurale, excepté pour l'arsenic, le plomb et le manganèse pour lesquels les niveaux sont davantage représentatifs d'un environnement urbain.

De plus, la comparaison des données de 2016 avec les seuils réglementaires existants en Allemagne et en Suisse pour l'arsenic, le cadmium, le nickel, le plomb et le zinc montre que les niveaux rencontrés dans l'environnement de l'établissement sont nettement inférieurs à ces valeurs de référence.

résultats des mesures de concentrations atmosphériques

chlorures particulaires et chlorure d'hydrogène

résultats

Les figures suivantes représentent l'évolution des concentrations en chlorures particulaires et chlorure d'hydrogène (soluble) relevées pendant la campagne, sur 7 périodes d'échantillonnage (les semaines 3 et 4 n'ont pas donné lieu à des prélèvements exploitables en raison d'une défaillance technique).

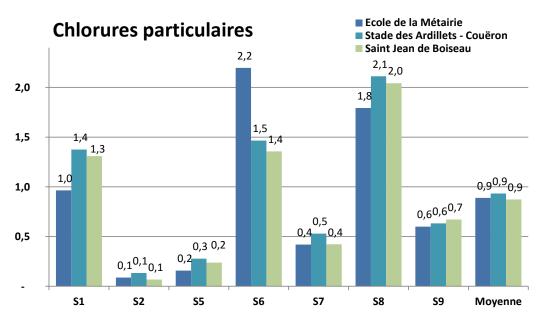


Figure 8 : évolution des concentrations en chlorures particulaires durant les 7 périodes de la campagne, sur les 3 sites (en $\mu g/m^3$)

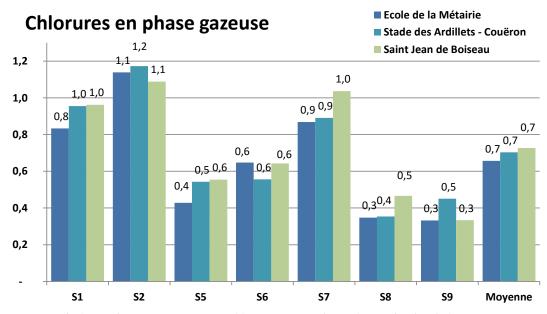


Figure 9 : évolution des concentrations en chlorures gazeux durant les 7 périodes de la campagne, sur les 3 sites (en $\mu g/m^3$)

On notera que les maxima en chlorures particulaires (semaines 1, 6 et 8) correspondent à des vents d'ouest alors que sur les valeurs plus modérées, les vents étaient plutôt d'est. Ce constat est cohérent avec l'identification des embruns marins comme principales sources de chlorures particulaires.

Par ailleurs, on pourra constater que lors des semaines non exposées aux vents d'ouest, là où les chlorures particulaires présentent des niveaux plus faibles, les chlorures gazeux se trouvent eux renforcés, signe de la dégradation de NaCl en HCl par l'acide sulfurique de l'air (phénomène connu sous le nom de vieillissement de l'aérosol, voir par exemple la campagne 2014 [2]).

Enfin, il faut noter que les niveaux de HCl sont inférieurs à 1,2 μ g/m³. À titre de comparaison, la réglementation allemande fixe la valeur limite à 100 μ g/m³ en moyenne annuelle, soit un niveau largement supérieur à celui observé dans l'environnement d'Arc-en-Ciel lors de cette campagne.

influence d'Arc-en-Ciel sur la concentration en chlorures

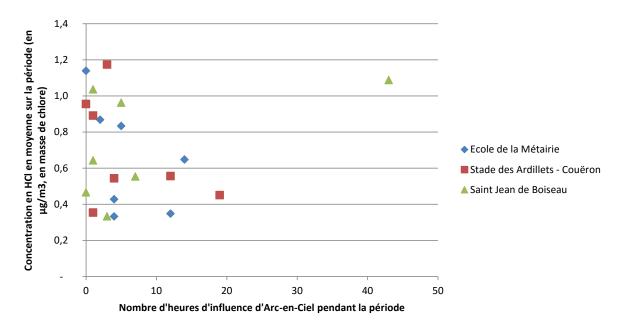


Figure 10 : corrélation entre les concentrations moyennes en chlorures gazeux et l'influence totale d'Arc-en-Ciel sur le site de mesure (approximée par le nombre d'heures où la direction du vent correspond à la direction "Arc-en-Ciel -> Site de mesure"

Les diagrammes précédents mettent en correspondance les différentes mesures de concentrations en chlorures atmosphériques avec le nombre d'heures où le site de mesure en question a été sous le vent de l'UVE. Aucune relation n'est clairement constatée, ce qui indique une absence d'influence décelable des émissions de l'UVE sur les teneurs en HCl mesurées à proximité.

métaux lourds dans l'air

méthodologie

La concentration de l'air en métaux lourds est déterminée en aspirant un volume d'air donné au travers d'un filtre qui est ensuite analysé en laboratoire (voir annexe 6 pour les coordonnées du laboratoire) pour y déterminer la quantité d'arsenic, de cadmium, de plomb, de nickel, de chrome, de cuivre, de manganèse et de zinc. À cette quantité est soustrait un blanc, mesuré sur un filtre non exposé.

Les mesures seront par ailleurs comparées aux valeurs cibles réglementaires présentées ci-dessous. Attention toutefois ces valeurs réglementaires sont des moyennes annuelles et des mesures sur neuf semaines ne permettant pas de vérifier explicitement le respect de ces valeurs.

Métal	Valeur réglementaire	Réglementation
	Moyenne annuelle (ng/m³)	
arsenic As	6	Décret 2010-1250
cadmium Cd	5	Décret 2010-1250
nickel Ni	20	Décret 2010-1250
plomb Pb	500 (valeur limite)	Décret 2010-1250
cadmium Cd	5	Recommandation OMS
manganèse Mn	150	Recommandation OMS

Tableau 8 : valeurs cibles pour les métaux dans l'air

résultats

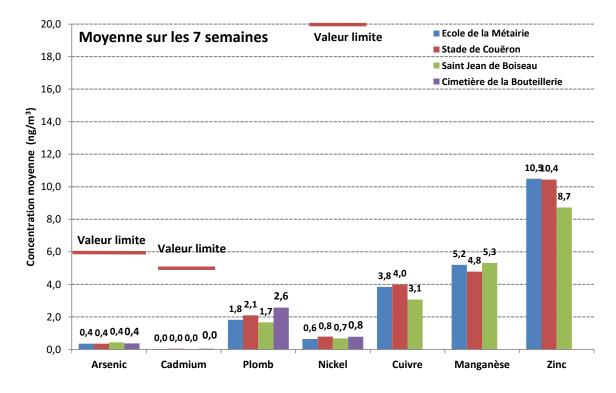


Figure 11 : concentration moyenne en métaux lourds mesurée pendant la période de la campagne

Comme l'analyse des dépôts le montrait, le zinc est le métal le plus présent et ce sur les 3 sites. Concernant les polluants réglementés, on constate que les valeurs de concentration mesurées pendant la campagne restent inférieures aux valeurs seuils, on pourrait supposer, en extrapolant ces valeurs sur l'année que les seuils seraient donc respectés. Ces valeurs sont par ailleurs similaires à celles relevées sur le site du cimetière de la Bouteillerie, on peut donc les considérer comme des niveaux de fond.

influence de l'UVE

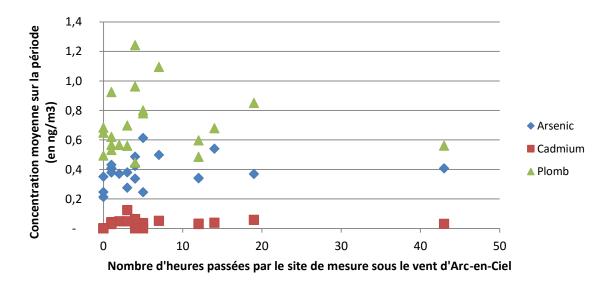


Figure 12 : corrélation entre la concentration moyenne et le nombre d'heures passées par le site sous le vent d'Arc-en-Ciel (pour l'arsenic, le cadmium et le nickel)

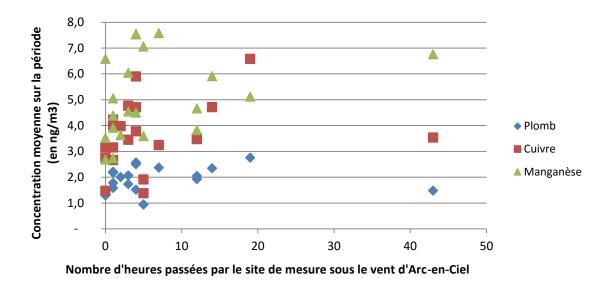


Figure 13 : corrélation entre la concentration moyenne et le nombre d'heures passées par le site sous le vent d'Arc-en-Ciel (pour le plomb, le cuivre et le manganèse)

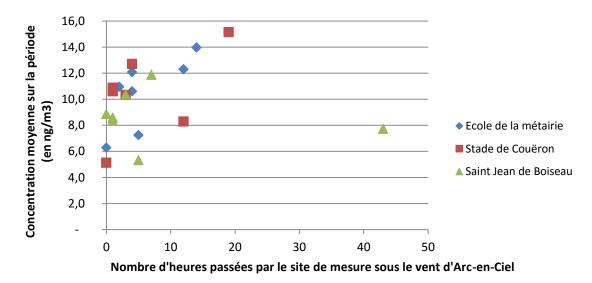


Figure 14 : corrélation entre le temps passé par les sites de mesure sous le vent d'Arc-en-Ciel et la concentration moyenne en Zinc mesurée sur la période

Au cours des semaines, on ne constate pas de corrélation entre l'exposition des sites de mesure aux vents venant d'Arc-en-Ciel et la concentration atmosphérique en métaux lourds relevée sur ces sites indiquant une absence de l'influence visible des émissions de l'UVE sur les teneurs atmosphériques mesurées à proximité. On notera par ailleurs que l'évolution au cours de la campagne est sensiblement la même pour les trois sites, traduisant la prédominance du niveau de fond régional sur les mesures.

historique

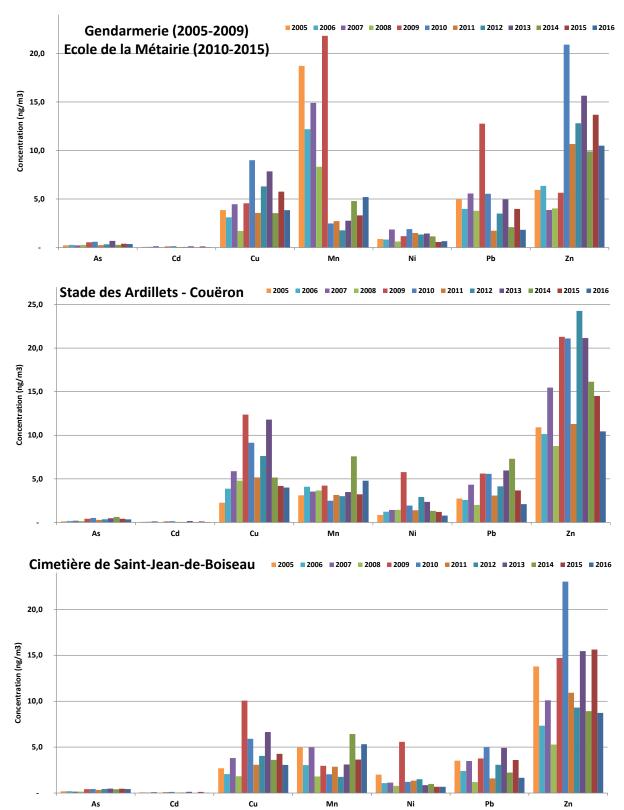
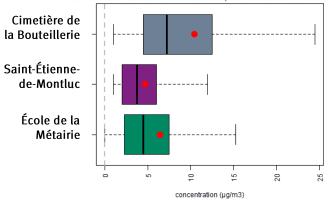


Figure 15 : évolution des concentrations en métaux lourds depuis 2005, pour chaque site autour d'Arc-en-Ciel

L'historique des concentrations atmosphériques en métaux lourds dans l'environnement d'Arc-en-Ciel indique que les niveaux relevés en 2016 sont dans la fourchette basse par rapport à ceux relevés antérieurement.


polluants mesurés en continu sur le site de l'école de la Métairie et par les stations du réseau Air Pays de la Loire

L'objectif de ce chapitre est d'évaluer l'influence de l'UVE sur les concentrations en dioxyde d'azote (NO₂), en particules fines (PM10), en dioxyde de soufre (SO₂) et en monoxyde de carbone (CO). Ainsi les mesures effectuées par le camion laboratoire installé sur le site de l'école de la Métairie pourront être comparées aux mesures réalisées par les stations du réseau permanent d'Air Pays de la Loire, non impactées par l'UVE, et qui constitueront donc une référence. Par ailleurs, le camion réalisant des mesures quart-horaires, une étude statistique fine est possible, en particulier en corrélant les mesures de polluant avec la direction du vent (via une rose de pollution).

Le contexte général de pollution en Pays de la Loire dans lequel s'est déroulée la campagne est celui d'un été calme, aucune procédure de vigilance n'a été déclenchée pendant la campagne. Les niveaux de PM10 et de NO2 observés pendant la campagne sur la région sont dans la moyenne des valeurs relevées les années précédentes, sur la même période de l'année.

dioxyde d'azote évolution et dispersion des mesures

boxplot des concentrations horaires (moyennes glissantes) en dioxyde d'azote mesurée sur les sites de l'école de la Métairie, de Saint-Etienne de Montluc et du cimetière nantais de la Bouteillerie. du 03 aout au 06 octobre 2016

concentration moyenne en dioxyde d'azote au cours d'une journée, sur les sites de l'Ecole de la Métairie, de Saint-Etienne de Montluc et du cimetière nantais de la Bouteillerie, du 03 aout au 06 octobre 2016 (moyenne sur 65 jours)

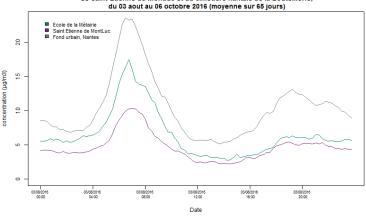


Figure 16 : distribution des mesures de dioxyde d'azote sur la durée de la campagne, pour chaque site. La ligne noire représente la concentration médiane, le point rouge la moyenne

Figure 17 : jour moyen en concentration de NO₂, pour chaque site. La moyenne est calculée sur chaque point de mesure quart-horaire

Les figures 17 et 18 montrent que le niveau de NO₂ au niveau de l'école de la Métairie se comporte, dans son évolution et dans sa dispersion statistique, de la même manière que des niveaux sur des sites non exposés à l'UVE. On remarquera en particulier, deux pics au cours d'une journée moyenne, généralement attribués aux trajets motorisés domicile-travail des habitants de la zone.

L'amplitude est à mi-chemin entre celui du site urbain de la Bouteillerie et celui, plus rural, de Saint-Étienne-de-Montluc, ce qui correspond à la situation géographique de Couëron.

rose de pollution

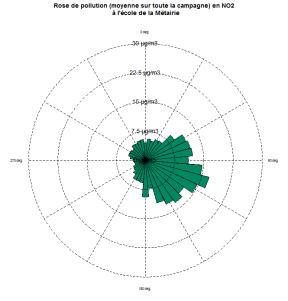


Figure 18: rose de pollution au NO, (moyenne)

La rose de pollution traduit l'influence des vents sur les niveaux de pollution observés. La rose ci-dessus indique que le niveau de NO_2 à l'école de la Métairie est essentiellement guidé par les vents de sud-est, c'est-à-dire par les apports en dioxyde d'azote en provenance de l'agglomération nantaise et de son trafic routier et non par Arc-en-Ciel, situé au sud-sud-ouest du site de mesure (secteur 200-220°).

particules fines PM10 évolution et dispersion des mesures

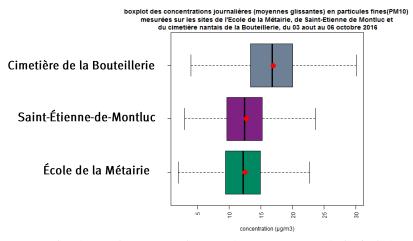


Figure 19 : distribution des mesures de particules fines PM10 sur la durée de la campagne, pour chaque site. La ligne noire représente la concentration médiane, le point rouge la moyenne

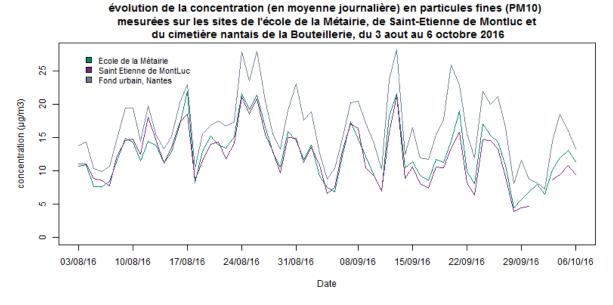


Figure 20 : évolution de la concentration en particules fines PM10 pendant la campagne (en moyenne journalière), pour chaque site

La figure 20 présente la distribution statistique des mesures de particules fines à l'école de la Métairie et compare celle-ci aux distributions relevées à Nantes et à Saint-Étienne-de-Montluc. La figure 21 présente quant à elle, les évolutions de ces niveaux journaliers au cours de la période. Les niveaux en particules fines PM10 restent assez faibles sur le site de l'École de la Métairie, compris entre les niveaux du site urbain de Nantes et du site de fond de Saint-Étienne de Montluc. Ces trois niveaux évoluent par ailleurs de manière synchroniée.

roses de pollution

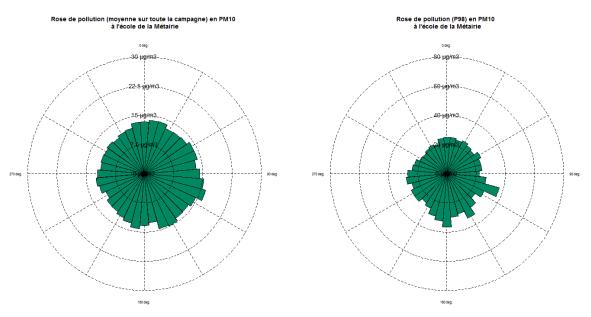


Figure 21 : roses de pollution aux particules fines sur le site de l'école de la Métairie (en moyenne à gauche, $98^{\text{ème}}$ percentile à droite)

Les roses de pollution établies sur le site de La Métairie pour les particules fines ne mettent pas en évidence d'influence d'Arc-en-Ciel sur les niveaux de ce polluant (le secteur 200-220° n'est pas particulièrement déterminant).

dioxyde de soufre résultats des mesures

concentration (en moyenne horaire) en dioxyde de soufre mesurée sur le site de l'école de la Métairie, du 3 aout au 6 octobre 2016

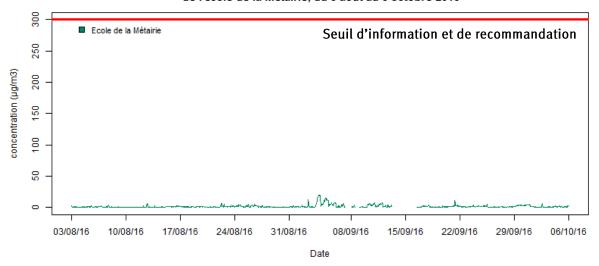


Figure 22 : moyenne horaire des mesures en SO, sur le site de l'école de la Métairie

Le graphique ci-dessus présente les valeurs des concentrations en dioxyde de soufre relevées lors de la campagne. On constate des niveaux de fond (autour de 0,5 μ g/m³) et de pointe (20 μ g/m³) très bas (le seuil de recommandation et d'information est de 300 μ g/m³) et peu différent des niveaux relevés dans les zones non influencés par l'UVE.

roses de pollution

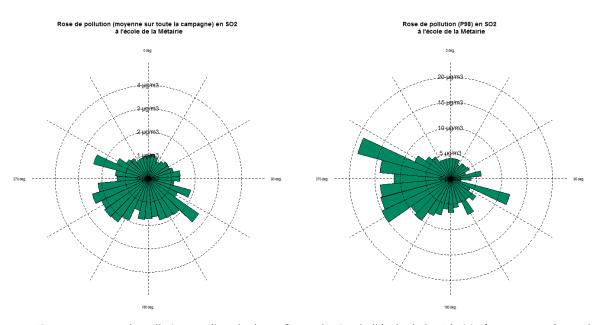


Figure 23 : roses de pollution au dioxyde de soufre sur le site de l'école de la Métairie (en moyenne à gauche, $98^{e^{me}}$ percentile à droite)

Les roses de pollution confirment l'absence d'influence de l'UVE sur les niveaux en SO₂ dans l'environnement de celui-ci. On remarque que les pics pointent vers le nord-ouest, suggérant une influence des industries de Basse-Loire (raffinerie Total ou centrale thermique de Cordemais).

monoxyde de carbone résultats

boxplot des concentrations (moyenne glissants sur 8h) en monoxyde de carbone, du 3 aout au 6 octobre 2016

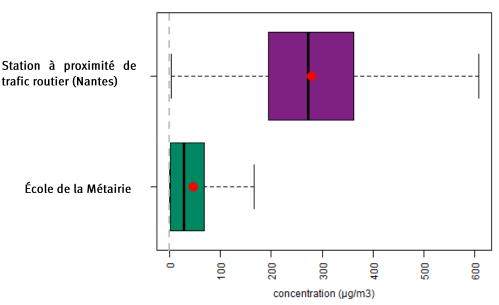


Figure 24 : distribution des mesures de concentration en monoxyde de carbone pendant la campagne. La ligne noire est la médiane, le point rouge la moyenne

maximum journalier de la concentration (moyenne glissante sur 8h) 200 Ecole de la Métairie 900 500 concentration (µg/m3) 400 300 200 8 0 02/08/16 09/08/16 16/08/16 24/08/16 31/08/16 07/09/16 14/09/16 22/09/16 29/09/16 06/10/16 Date

Figure 25 : évolution du niveau en monoxyde de carbone pendant la campagne, sur deux sites

Les résultats présentés sur les graphiques ci-dessus mettent en avant des niveaux de monoxyde de carbone à la Métairie très bas, proches des limites de détection. Ces niveaux sont par ailleurs bien inférieurs aux valeurs relevées sur le boulevard Victor-Hugo, à Nantes, site en proximité de trafic routier.

Le monoxyde de carbone n'est plus un polluant préoccupant pour la qualité de l'air ambiant, même à proximité du trafic routier (sa valeur limite est réglementairement fixée à 10 000 μ g/m³ pour le maximum journalier de la moyenne 8-horaire glissante).

roses de pollution

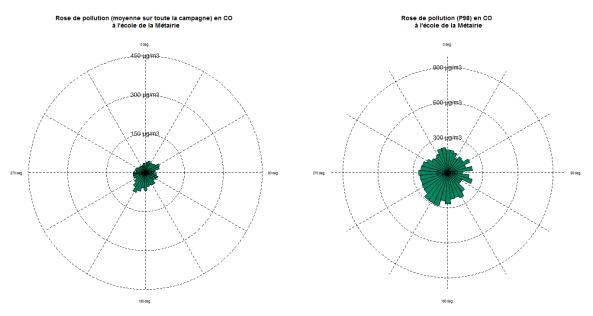


Figure 26 : roses de pollution au monoxyde de carbone sur le site de l'école de la Métairie (en moyenne à gauche, $98^{e^{me}}$ percentile à droite)

Les roses de pollution indiquent l'absence d'influence de l'UVE sur les niveaux de monoxyde de carbone relevés à la Métairie.

conclusions

epuis 1997, Air Pays de la Loire effectue une surveillance de la qualité de l'air dans l'environnement d'Arc-en-Ciel. Cette surveillance, rendue obligatoire par les arrêtés préfectoraux du 2 juillet 1992 et du 14 avril 2003, consiste à réaliser des mesures des polluants atmosphériques dans l'air ambiant et les retombées atmosphériques.

Depuis 2009, ce dispositif a été complété par le suivi en continu des oxydes d'azote, du dioxyde de soufre, du monoxyde de carbone et des particules fines PM10.

Les résultats de la campagne de mesure menée du 3 août au 6 octobre 2016 montrent que dans l'environnement du centre de traitement et de valorisation des déchets Arc-en-Ciel :

- les valeurs de référence pour les métaux lourds réglementés (Arsenic, Cadmium, Plomb, Nickel) sont largement respectées que ce soit dans l'air ambiant ou dans les retombées atmosphériques (réglementations allemande et suisse);
- l'influence de l'établissement sur les dépôts de métaux lourds (Arsenic, Cadmium, Plomb, Nickel, Zinc, Manganèse, Mercure et Cuivre) dans son environnement n'est pas significative;
- aucun lien de causalité n'a été établi entre les niveaux d'acide chlorhydrique et de métaux lourds dans l'air et les émissions de l'établissement;
- l'établissement n'influence pas les niveaux de dioxines et furanes dans l'air environnant;
- aucune augmentation significative des niveaux de dioxyde de soufre SO₂, dioxyde d'azote NO₂, monoxyde de carbone CO ou particules fines PM10 n'est observée dans le secteur de vent en provenance d'Arc-en-Ciel et les niveaux réglementaires, hors épisode de pollution régionale aux particules fines, sont respectés à Couëron.

En résumé, la campagne de mesure 2016 n'a pas montré d'influence notable des émissions d'Arc-en-Ciel sur les niveaux des différents polluants ciblés par Air Pays de la Loire. Par ailleurs, ces niveaux, relativement faibles au regard des normes en vigueur, correspondent à une qualité d'air standard en milieux périurbain.

table des figures

Figure 1 : localisation des trois sites équipés par Air Pays de la Loire pour mesurer l'influence de l'UVE sur sor environnement (en bleu l'UVE, en violet les sites équipés de jauges de récupération des eaux de pluies et de filtres pour les métaux et le chlorures, en rouge, le site de l'école de la Métairie, équipé comme les deux précédents e accueillant de plus un camion laboratoire (pour le NO ₂ , le SO ₂ , les PM10 et le CO)
Figure 2 : localisation des différentes stations du réseau Air Pays de la Loire dont les résultats ont été utilisés pou comparer les mesures du camion laboratoire à des sites non influencés par l'UVE. En bleu foncé, violet et rouge, voi Figure 1, en bleu ciel les stations du réseau, avec les polluants mesurés sur chacune d'entre elles, en vert le site de la Chauvinère, où a été installée une jauge de récupération d'eaux pluviales afin de déterminer le niveau de fond er dioxines et furanes
Figure 3 : localisation des jauges de récupérations d'eaux de pluies utilisées pour mesurer les retombées en dioxines et furanes dans les zones non influencées par Arc-en-Ciel (en bleu clair les jauges, en bleu foncé Arc-en-Ciel)
Figure 4 : rose des vents calculée sur l'ensemble de la période de mesure (station météorologique de Nantes-Atlantique)13
Figure 5 : toxicité équivalente des dioxines et des furanes mesurées sur chaque site15
Figure 6 : évolution des retombées en dioxines et furanes autour d'Arc-en-Ciel depuis 200316
Figure 7 : retombées totales en métaux lourds dans l'environnement d'Arc-en-Ciel17
Figure 8 : évolution des concentrations en chlorures particulaires durant les 7 périodes de la campagne, sur les 3 sites (en μg/m³)19
Figure 9 : évolution des concentrations en chlorures gazeux durant les 7 périodes de la campagne, sur les 3 sites (en µg/m³)19
Figure 10 : corrélation entre les concentrations moyennes en chlorures gazeux et l'influence totale d'Arc-en-Ciel sur le site de mesure (approximée par le nombre d'heures où la direction du vent correspond à la direction "Arc-en-Ciel -> Site de mesure"
Figure 11 : concentration moyenne en métaux lourds mesurée pendant la période de la campagne21 Figure 12 : corrélation entre la concentration moyenne et le nombre d'heures passées par le site sous le vent d'Arc-en- Ciel (pour l'arsenic, le cadmium et le nickel)22
Figure 13 : corrélation entre la concentration moyenne et le nombre d'heures passées par le site sous le vent d'Arc-en- Ciel (pour le plomb, le cuivre et le manganèse)22
Figure 14 : corrélation entre le temps passé par les sites de mesure sous le vent d'Arc-en-Ciel et la concentratior moyenne en Zinc mesurée sur la période23
Figure 15 : évolution des concentrations en métaux lourds depuis 2005, pour chaque site autour d'Arc-en-Ciel24
Figure 16 : distribution des mesures de dioxyde d'azote sur la durée de la campagne, pour chaque site. La ligne noire représente la concentration médiane, le point rouge la moyenne25
Figure 17 : jour moyen en concentration de NO₂, pour chaque site. La moyenne est calculée sur chaque point de mesure quart-horaire25
Figure 18 : rose de pollution au ${ m NO_{_2}}$ (moyenne)
Figure 19 : distribution des mesures de particules fines PM10 sur la durée de la campagne, pour chaque site. La ligne noire représente la concentration médiane, le point rouge la moyenne27
Figure 20 : évolution de la concentration en particules fines PM10 pendant la campagne (en moyenne journalière) pour chaque site
Figure 21 : roses de pollution aux particules fines sur le site de l'école de la Métairie (en moyenne à gauche, 98 ^{èm} percentile à droite)28
Figure 22 : moyenne horaire des mesures en SO₂ sur le site de l'école de la Métairie29
Figure 23 : roses de pollution au dioxyde de soufre sur le site de l'école de la Métairie (en moyenne à gauche, 98 ^{em} percentile à droite)29
Figure 24 : distribution des mesures de concentration en monoxyde de carbone pendant la campagne. La ligne noire est la médiane, le point rouge la moyenne30
Figure 25 : évolution du niveau en monoxyde de carbone pendant la campagne, sur deux sites3c
Figure 26 : roses de pollution au monoxyde de carbone sur le site de l'école de la Métairie (en moyenne à gauche, 98 ^{èm}

table des tableaux

Tableau 1 : caractéristiques des 3 sites de mesure dans l'environnement d'Arc-en-Ciel	5
Tableau 2 : périodes de prélèvement	8
Tableau 3 : périodes d'exposition des collecteurs d'eaux de pluie	8
Tableau 4 : typologie des sites, polluants étudiés et durée des prélèvements	9
Tableau 5 : caractéristiques météorologiques	.12
Tableau 6 : toxicité équivalente totale (NATO) sur chaque site	.14
Tableau 7 : flux moyen de dépôt total de métaux recensés dans la littérature	.18
Tableau 8 : valeurs cibles nour les métaux dans l'air	21

bibliographie

- [1] Site internet : http://www.usine-arcenciel.fr
- [2] Air Pays de la Loire, "évaluation de la qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2014," janvier 2015,
- [3] CITEPA, "Inventaire des émissions de polluants dans l'atmosphère en France, substances relatives à la contamination par les polluants organiques persistants," avril 2010,
- [4] Union européenne, "Directive 2000/76/CE du Parlement européen et du Conseil du 4 décembre 2000 relative à l'incinération des déchets," 2000,
- [5] Air Pays de la Loire, "Qualité de l'air dans l'environnement du Centre de Traitement et de Valorisation des Déchets Valoréna, campagne 2011," février 2012,
- [6] M, Durif, "Méthode de surveillance des retombées des dioxines et furanes autour d'une UIOM, INERIS," 2001,
- [7] Atmo Poitou-Charentes, "Etude de l'impact de l'UVE de Poitiers sur son environnement," campagne 2009,
- [8] Atmo Poitou-Charentes, "Etude de l'impact de l'UVE de la Communauté d'Agglomération de Poitiers sur son environnement," campagne 2007,
- [9] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2003," décembre 2003,
- [10] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2004," décembre 2004,
- [11] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2005," décembre 2005,
- [12] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2006," octobre 2006,
- [13] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2007," juin 2007,
- [14] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2008," février 2009,
- [15] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2009," septembre 2009,
- [16] S, Garnaud, "Transfert et évolution géochimique de la pollution métallique en bassin versant, Thèse de doctorat de l'Ecole Nationale des Ponts et Chaussées, Paris," 1999,
- [17] P, Rossini, S, Guerzoni, E, Molinaroli, G, Rampazzo, A, De Lazzari, and Z, A,, "Atmospheric bulk deposition to the lagoon of Venice," *Environmental International*, vol, 31, pp, 959–974, 2005,
- [18] R, Huston, Y, Chan, T, Gardner, G, Shaw, and H, Chapman, "Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks," *Water Research*, vol, 43, pp, 1630–1640, 2009,
- [19] C, Wong, X, Li, G, Zhang, S, Qi, and X, Peng, "Atmospheric deposition of heavy metals in the Pearl River Delta, China," *Atmospheric Environment*, vol, 37, pp, 767–776, 2003,
- [20] S, Azimi, "Sources, flux et bilan des retombées atmosphériques de métaux en Ile-de-France, Thèse de doctorat de l'Ecole Nationale des Ponts et Chaussées, Paris," 2004,
- [21] L, Sabin, J, Lim, K, Stolzenbach, and K, Schiff, "Contribution of trace metals from atmospheric deposition to stormwater runoff in a small impervious urban catchment," *Water Research*, vol, 39, pp, 3929–3937, 2005,
- [22] Air Pays de la Loire, "évaluation de la qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2015," septembre 2015,
- [22] Ascoparg, Coparly, and Sup'air, "Plan de surveillance dioxines et métaux lourds : mesures de métaux lourds dans les retombées atmosphériques 2006-2007,"
- [23] Air Languedoc-Roussillon, "Surveillance de l'environnement de l'incinérateur de Lunel-Viel, Bilan 2006 Résumé," 2006,
- [24] V, Sandroni and C, Migon, "Atmsopheric deposition of metallic pollutants over the ligurian sea: labile and residual inputs," *Chemosphere*, vol, 47, pp, 753–764, 2002,
- [25] J, Injuk, R, Van Grieken, and G, De Leeuw, "Deposition of atmospheric trace elements into the North Sea: coastal, ship, platform measurements and model predictions," *Atmospheric environment*, vol, 32, pp, 3011–3025, 1997,
- [26] Air Pays de la Loire, "Evaluation de la pollution atmosphérique du quartier Pin Sec à Nantes, rapport d'étude, sous presse," 2009,

- [27] Air Normand, "Mesures de la qualité de l'air autour de l'UIOM de Guichainville, octobre novembre 2008," 2008,
- [28] Air Languedoc-Roussillon, "Surveillance des métaux toxiques Environnement de l'UTVE de Lunel-Viel, Année 2010," 2010,
- [29] Air Languedoc-Roussillon, "Surveillance des métaux toxiques Environnement de l'UTVE de Calce, Année 2010," 2010,
- [30] Airparif, "Surveillance des métaux dans l'air autour de l'usine d'incinération d'ordures ménagères à Saint Ouen," septembre 2010,
- [31] ORAMIP, "Mesures de qualité de l'air autour de l'incinérateur du Mirail à Toulouse (SETMI)," octobre 2010,
- [32] Air C.O.M, "Surveillance de l'UIOM du SYVEDAC," 2009,
- [33] Atmo Poitou-Charentes, Synthèse des mesures de dioxines et furanes réalisées par les AASQA de 2006 à 2010, Avril 2011,
- [34] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2010," mars 2011,
- [35] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2011," février 2012,
- [36] Air Pays de la Loire, "Qualité de l'air dans l'environnement de l'UVE Arc-en-Ciel, campagne 2012," avril 2013,
- [37] Atmo Poitou-Charentes, "Etude de l'impact des rejets atmosphériques de l'usine d'incinération d'ordures ménagères, Echillais, Charente-Maritime (17), 2013", janvier 2014,
- [38] Air Languedoc-Roussillon, "Surveillance des métaux toxiques Environnement de l'UTVE de Lunel-Viel, Année 2012," 2013,

annexes

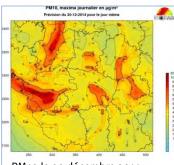
• annexe 1 : Air Pays de la Loire

annexe 2 : techniques d'évaluation
annexe 3 : types des sites de mesure

• annexe 4: polluants

• annexe 5 : seuils de qualité de l'air 2016

• annexe 6 : laboratoires d'analyses


annexe 1 : Air Pays de la Loire

Dotée d'une solide expertise riche de trente ans d'expérience, Air Pays de la Loire est agréée par le Ministère de l'Environnement, de l'Énergie et de la Mer pour surveiller la qualité de l'air de la région des Pays de la Loire. Air Pays de la Loire regroupe de manière équilibrée l'ensemble des acteurs de la qualité de l'air : services de l'État et établissements publics, collectivités territoriales, industriels et associations et personnalités qualifiées.

Air Pays de la Loire mène deux missions d'intérêt général : surveiller et informer.

surveiller pour savoir et comprendre

l'air de la région sous haute surveillance

Fonctionnant 24 heures sur 24, le dispositif permanent de surveillance est constitué d'une trentaine de sites de mesure, déployés sur l'ensemble de la région : principales agglomérations, zones industrielles et zones rurales.

mesurer où et quand c'est nécessaire

Air Pays de la Loire s'est doté de systèmes mobiles de mesure (laboratoires mobiles, préleveurs...). Ces appareils permettent d'établir un diagnostic complet de la qualité de l'air dans des secteurs non couverts par le réseau permanent. Des campagnes de mesure temporaires et ciblées sont ainsi menées régulièrement sur l'ensemble de la région.

la fiabilité des mesures garantie

Les mesures de qualité de l'air consistent le plus souvent à détecter de très faibles traces de polluants. Elles nécessitent donc le respect de protocoles très précis. Pour assurer la qualité de ces mesures, Air Pays de la Loire dispose d'un laboratoire d'étalonnage, airpl.lab accrédité par le Cofrac et raccordé au Laboratoire National d'Essais.

simuler et cartographier la pollution

Pour évaluer la pollution dans les secteurs non mesurés, Air Pays de la Loire utilise des logiciels de modélisation. Ces logiciels simulent la répartition de la pollution dans le temps et l'espace et permettent d'obtenir une cartographie de la qualité de l'air. La modélisation permet par ailleurs d'estimer l'impact de la réduction, permanente ou ponctuelle, des rejets polluants. Elle constitue un outil d'aide à la décision pour les autorités publiques compétentes et les acteurs privés.

prévoir la qualité de l'air

Si le public souhaite connaître la pollution prévue pour le lendemain afin de pouvoir adapter ses activités, les autorités politiques ont, elles, besoin d'anticiper les pics de pollution pour pouvoir prendre les mesures adaptées. En réponse à cette attente, Air Pays de la Loire réalise des prévisions de la pollution atmosphérique grâce à la plateforme interrégionale ESMERALDA.

informer pour prévenir

pics de pollution : une vigilance permanente

En cas d'épisode de pollution, une information spécifique est adressée aux autorités publiques, aux médias et à tous les internautes inscrits gratuitement. Suivant les concentrations de pollution atteintes, le préfet de département prend, si nécessaire, des mesures visant à réduire les émissions de polluants (limitations de vitesse, diminution d'activités industrielles...)

sur Internet : tous les résultats, tous les dossiers

Le site Internet www.airpl.org donne accès à de très nombreuses informations sur la qualité de l'air des Pays de la Loire. Elles sont actualisées toutes les heures. On y trouve les cartes de pollution et de vigilance, les communiqués d'alerte, les indices de la qualité de l'air, les mesures de pollution heure par heure, les actualités, toutes les publications d'Air Pays de la Loire...

annexe 2: techniques d'évaluation

mesures des dépôts de dioxines et furanes

méthode

Collecte des précipitations atmosphériques (selon la norme NF X43-014) dans des flacons en verre préalablement nettoyés en laboratoire, abrités de la lumière par du papier d'aluminium et surmontés d'entonnoir en verre (surface de collecte de 3,14 dm²). L'ensemble flacon et entonnoir est protégé dans un tube en inox fixé au sol.

Collecteur installé sur site

période

Du 3 août au 6 novembre 2016 pour l'ensemble des sites de mesure.

mise en œuvre

En début de campagne, installation sur le site d'un système de collecte et retrait en fin de campagne.

analyses et normes d'analyse

Détermination des 17 dioxines et furanes toxiques dans les retombées totales par le laboratoire µpolluants Technologie SA (accrédité COFRAC 1-1151 section «Mesures dans les retombées atmosphériques, détermination de la concentration massique en PCDD et PCDF »).

Les échantillons sont tout d'abord filtrés à travers un tamis de 1 mm d'ouverture de maille. L'extraction de l'échantillon d'eau consiste en une extraction liquide-liquide avec du dichlorométhane. Les particules sont séchées puis marquées avant extraction solide-liquide au toluène. Les extraits obtenus sont combinés, puis purifiés sur colonnes chromatographiques contenant des adsorbants spécifiques.

L'extrait est concentré et des standards internes sont ajoutés. L'extrait est analysé par HRGC/HRMS à haute résolution (R=10 000). La filtration et le tamisage se réfère à la norme NF X43-014.

La mesure de ces retombées atmosphériques est exprimée en pg I-TEQ /m²/jour.

prise en compte d'éventuelles contaminations

Un collecteur témoin nettoyé dans les mêmes conditions que celles utilisées pour les collecteurs de terrain a été analysé selon le même protocole que les échantillons. Si les concentrations obtenues pour les 17 congénères toxiques étaient supérieures à la limite de détection analytique alors elles étaient soustraites aux concentrations mesurées lorsque celles-ci étaient supérieures à la limite de quantification.

Par ailleurs, si un congénère n'est pas présent en quantité dépassant la limite de détection, la valeur de cette limite est retenue dans le calcul de la toxicité équivalent totale.

mesures de dépôts de métaux, chlorures et sodium

méthode

Collecte des précipitations atmosphériques (norme NF X43-014) dans des jauges Owen (surface d'exposition de 6,6 dm²).

Vue d'une jauge Owen

période

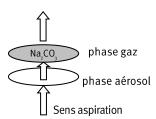
Du 3 août au 6 novembre 2016 pour l'ensemble des sites de mesure.

mise en œuvre

Installation d'une jauge Owen sur chaque site en début de campagne et retrait en fin de campagne.

analyse des eaux de pluie par le laboratoire IANESCO

Détermination de la masse en chlorure et sodium selon les normes NF EN ISO 10304, NF ISO 11885, de la masse en métaux lourds selon les normes NF EN ISO 17294-1, NF EN 1233, NF EN 1483, NF EN 11-885. La mesure de ces retombées atmosphériques est exprimée en $mg/m^2/jour$ pour les chlorures, le sodium et en $\mu g/m^2/jour$ pour les métaux lourds.


mesures des concentrations atmosphériques en chlorures particulaires et gazeux

Vue du préleveur de chlorures particulaires et gazeux

principe de collecte

Collecte de la phase aérosol sur filtre en fibre de quartz issue du prélèvement de la phase gazeuse (HCl) sur filtre en fibre de quartz imprégné de NO_2CO_3 (5 %).

pas de temps

Prélèvement hebdomadaire.

analyse des filtres

Par chromatographie ionique (norme NF ISO 10304-2), par le Laboratoire de Rouen. La limite de quantification (plus petite quantité mesurée et quantifiée) par les chlorures est de 2 μ g/filtre soit pour un prélèvement hebdomadaire à $1/m^3$ h de 0,01 μ g/m³.

analyse des filtres

Chaque semaine, Air Pays de la Loire a adressé au Laboratoire de Rouen pour analyse deux filtres témoins (filtres aérosol et filtre gaz).

Les concentrations en chlorures sur les filtres témoins (généralement inférieures à la limite de quantification) sont déduites des concentrations calculées pour les échantillons réels.

mesures des concentrations atmosphériques de métaux

Vue d'un système de prélèvement par filtre

méthode

Collecte des particules en suspension de diamètre inférieur à 10 μ m (PM10) sur des filtres en fibre de quartz avec un débit de 1 m³/h.

pas de temps

Prélèvement hebdomadaire.

mise en œuvre

Au début de chaque période d'une semaine, installation sur le site d'un Partisol spéciation (cf. photo ci-dessus).

analyse de chaque filtre par le laboratoire IANESCO - normes d'analyses

Détermination de la masse en métaux lourds selon la norme FDT 90-119 pour As, Cr, Cu, Cd, Ni et Pb, selon la norme FN EN ISO 11-885 pour Zn et Mn, selon la norme NF EN 1483 pour Hg.

Les niveaux moyens hebdomadaires en métaux lourds (en ng/m³) sont ensuite obtenus à partir du volume d'air prélevé par les pompes.

Les limites de quantification (plus petite quantité mesurée et quantifiée) de chacun des 9 métaux lourds sont données dans le tableau suivant en $\mu g/filtre$ et dans les conditions de prélèvement décrites ci-dessus, en ng/m^3 :

	LQ filtre (µg/filtre)	LQ air (ng/m³)				
As	0,005	0,03				
Cd	0,005	0,03				
Cr	0,05	0,3				
Cu	0,005	0,03				
Mn	0,05	0,3				
Hg	0,01	0,06				
Ni	0,005	0,03				
Pb	0,05	0,3				
Zn	0,05	0,3				

Limites de quantification

prise en compte des éventuelles contaminations

Chaque semaine, Air Pays de la Loire a également adressé au laboratoire Ianesco, un filtre témoin servant à quantifier les contaminations éventuelles des filtres ou lors des opérations de conditionnement et d'analyse.

Cette année, les teneurs en Cr dans les filtres vierges étaient particulièrement élevées (de l'ordre de 2.7 µg/filtre) indiquant une contamination des filtres lors du process de fabrication. De ce fait, les concentrations atmosphériques mesurées dans l'environnement d'Arc-en-Ciel n'ont pas été intégrées dans le rapport. Toutefois, les valeurs mesurées dans l'environnement de l'établissement ne s'écartent pas de la valeur de blanc et une pollution de l'air par du chrome est, de ce fait, peu probable.

mesures des concentrations atmosphériques en dioxyde d'azote

méthode - normes

Le dioxyde d'azote est détecté par la technique de chimiluminescence (norme NF EN 14211).

Analyseur automatique d'oxydes d'azote

pas de temps:

Tous les quarts d'heure.

étalonnage:

Ces mesures sont étalonnées par des étalons de transfert raccordés au laboratoire d'étalonnage airpl,lab certifié COFRAC 17025 dans le domaine "chimie et matériaux de référence – mélanges de gaz".

mesures des concentrations atmosphériques en dioxyde de soufre

méthode - normes

Le dioxyde de soufre est détecté par la technique de fluorescence UV (norme NF EN 14212).

pas de temps:

Tous les quarts d'heure.

étalonnage:

Ces mesures sont étalonnées par des étalons de transfert raccordés au laboratoire d'étalonnage airpl,lab certifié COFRAC 17025 dans le domaine "chimie et matériaux de référence – mélanges de gaz".

mesures des concentrations atmosphériques en monoxyde de carbone méthode - normes

Le monoxyde de carbone est détecté par la technique d'absorption infrarouge (NF EN 14626).

pas de temps:

Tous les quarts d'heure.

étalonnage:

Ces mesures sont étalonnées par des étalons de transfert raccordés au laboratoire d'étalonnage airpl.lab certifié COFRAC 17025 dans le domaine "chimie et matériaux de référence – mélanges de gaz".

mesures des concentrations atmosphériques en particules PM10 méthode – normes

Les mesures de poussières fines sont effectuées à l'aide du système TEOM-FDMS. Cette technique est équivalente à la méthode gravimétrique de référence de la norme CEN 12341. Elle prend en compte la fraction volatile de l'aérosol et est utilisée depuis le 1^{er} janvier 2007 par les réseaux de surveillance de la qualité de l'air pour le suivi réglementaire des teneurs en poussières fines en milieu urbain. Elle s'est substituée aux mesures par TEOM seul qui ne prenaient pas en compte les aérosols semi volatils.

pas de temps: Tous les quarts d'heure

annexe 3: types des sites de mesure

Les sites de mesure sont localisés selon des objectifs précis de surveillance de la qualité de l'air, définis au plan national.

sites urbains

Les sites urbains sont localisés dans une zone densément peuplée en milieu urbain et de façon à ne pas être soumis à une source déterminée de pollution ; ils caractérisent la pollution moyenne de cette zone.

sites de trafic

Les sites de trafic sont localisés près d'axes de circulation importants, souvent fréquentés par les piétons ; ils caractérisent la pollution maximale liée au trafic automobile.

sites industriels

Les sites industriels sont localisés de façon à être soumis aux rejets atmosphériques des établissements industriels ; ils caractérisent la pollution maximale due à ces sources fixes

sites ruraux

Les sites ruraux participent à la surveillance de l'exposition des écosystèmes et de la population à la pollution atmosphérique de fond (notamment photochimique).

annexe 4: polluants

les oxydes d'azote (NO₂)

Les NO_x comprennent essentiellement le monoxyde d'azote (NO) et le dioxyde d'azote (NO_2). Ils résultent de la combinaison de l'azote et de l'oxygène de l'air à haute température. Environ 95 % de ces oxydes sont la conséquence de l'utilisation des combustibles fossiles (pétrole, charbon et gaz naturel). Le trafic routier (53 %) en est la source principale. Ils participent à la formation des retombées acides. Sous l'action de la lumière, ils contribuent à la formation d'ozone au niveau du sol (ozone troposphérique).

Le monoxyde d'azote présent dans l'air inspiré passe à travers les alvéoles pulmonaires, se dissout dans le sang où il limite la fixation de l'oxygène sur l'hémoglobine. Les organes sont alors moins bien oxygénés.

Le dioxyde d'azote pénètre dans les voies respiratoires profondes. Il fragilise la muqueuse pulmonaire face aux agressions infectieuses, notamment chez les enfants. Aux concentrations rencontrées habituellement, le dioxyde d'azote provoque une hyperréactivité bronchique chez les asthmatiques.

les particules fines (ou poussières)

Les particules fines ou poussières constituent en partie la fraction la plus visible de la pollution atmosphérique (fumées). Elles ont pour origine les différentes combustions, le trafic routier et les industries. Elles sont de nature très diverses et peuvent véhiculer d'autres polluants comme des métaux lourds ou des hydrocarbures. De diamètre inférieur à 10 µm (PM10), elles restent plutôt en suspension dans l'air. Supérieures à 10 µm, elles se déposent, plus ou moins vites, au voisinage de leurs sources d'émission. Les particules plus fines, appelées PM2,5 (diamètre inférieur à 2,5 µm) pénètrent plus profondément dans les poumons. Celles-ci peuvent rester en suspension pendant des jours, voire pendant plusieurs semaines et parcourir de longues distances.

La profondeur de pénétration des particules dans l'arbre pulmonaire est directement liée à leurs dimensions, les plus grosses étant arrêtées puis éliminées au niveau du nez et des voies respiratoires supérieures. Le rôle des particules en suspension a été montré dans certaines atteintes fonctionnelles respiratoires, le déclenchement de crises d'asthme et la hausse du nombre de décès pour cause cardio-vasculaire ou respiratoire, notamment chez les sujets sensibles (enfants, bronchitiques chroniques, asthmatiques...).

les métaux dits "lourds" (plomb...)

Ils englobent l'ensemble des métaux présentant des caractères toxiques pour la santé et l'environnement. Ils proviennent essentiellement de la combustion du charbon, du pétrole ou des ordures ménagères ainsi que de procédés industriels (fonderies, usinage,...). Parmi ces métaux, on peut citer, le plomb, l'arsenic, le cadmium, le nickel. Dans l'air, ils se retrouvent le plus souvent au niveau des particules. Le mercure est présent à l'état gazeux.

le monoxyde de carbone (CO)

Ce gaz provient des combustions incomplètes. Il est émis en grande partie (60 %) par le chauffage urbain, collectif ou individuel. Le trafic routier, vient en deuxième position avec 31 % des émissions. Dans l'atmosphère, il se combine en partie et à moyen terme avec l'oxygène pour former du dioxyde de carbone (CO2). On le rencontre essentiellement au niveau du sol à proximité des sources d'émission. Il participe avec les oxydes d'azote et les composés organiques volatils, à la formation d'ozone troposphérique.

Le CO est dangereux car non décelable. Son effet toxique se manifeste à de très faibles concentrations en exposition prolongée. Le CO est principalement un poison sanguin. Il se fixe à la place de l'oxygène sur l'hémoglobine du sang conduisant à un manque d'oxygénation du système nerveux, du cœur et des vaisseaux sanguins. Les premiers symptômes de l'intoxication sont les seuls signaux d'alarme : maux de tête, une vision floue, des malaises légers, des palpitations. Si les concentrations de CO sont élevées, l'intoxication se traduit par des nausées, des vomissements, des vertiges ou, plus grave, un évanouissement puis la mort. La gravité de l'intoxication dépend de la quantité de CO fixé par l'hémoglobine. Elle est donc liée à plusieurs facteurs : la concentration de CO dans l'air, la durée d'exposition et le volume respiré.

le dioxyde de soufre (SO₃)

C'est le principal composant de la pollution « acide ». Malgré une diminution de 60 % en France entre 1980 et 1990, du essentiellement à la réduction de la production électrique par les centrales thermiques, le SO₂ provient à plus de 80 % de l'utilisation des combustibles contenant du soufre (fuel et charbon).

Le dioxyde de soufre est un gaz irritant, notamment pour l'appareil respiratoire. Les fortes pointes de pollution peuvent déclencher une gêne respiratoire chez les personnes sensibles (asthmatiques, jeunes enfants...). Les efforts physiques intenses accroissent les effets du dioxyde de soufre. Aux concentrations habituellement observées dans l'environnement, une très grande proportion du dioxyde de soufre inhalé est arrêtée par les sécrétions muqueuses du nez et des voies respiratoires supérieures. Le dioxyde de soufre qui atteint le poumon profond, passe dans la circulation sanguine puis est éliminé par voie urinaire. Des études épidémiologiques ont montré qu'une hausse des taux de dioxyde de soufre s'accompagnait notamment d'une augmentation du nombre de décès pour cause cardiovasculaire.

l'acide chlorhydrique (HCl)

Ce polluant participe à la formation des retombées acides. Il provient surtout de l'incinération des ordures ménagères et, notamment, des plastiques comme le PVC (polychlorovinyle).

les dioxines et les furanes

Les sources principales en sont la combustion (incinération des ordures ménagères en particulier) et la sidérurgie. Contrairement aux autres polluants, l'exposition de l'homme passe très peu par l'air: les dioxines et les furanes s'accumulent le long des chaînes alimentaires (poisson, viande, lait,...) et l'ingestion d'aliments est responsable à 90 % de la contamination humaine.

annexe 5 : seuils de qualité de l'air 2016

SEUILS DE DÉCLENCHEMENT DES ÉPISODES DE POLLUTION

Décret 2010-1250 du 21/10/2010 - arrêté ministériel du 26/03/2014

		POLLUANTS							
TYPE DE SEUIL (µg/m²)	DURÉE CONSIDÉRÉE	OZONE (O ₂)	DIOXYDE D'AZOTE (NO ₂)	PARTICULES FINES (PM10)	DIOXYDE DE SOUFRE (SO				
Seuil de recommandation et d'information	Moyenne horaire	180	200	-	300				
	Moyenne 24-horaire	-	-	50	-				
Seuil d'alerte	Moyenne horaire	240 ^[1] 1" seuil : 240 ^[2] 2 ^{km} seuil : 300 ^[3] 3 ^{km} seuil : 360	400년 200년	7	500 PA				
	Moyenne 24-horaire	G. T.	-	80 ou après 3 jours de dépassement du seuil de recommandation et d'information (persistance).	-				

^[1] pour une protection sanitaire pour toute la population,

Seult de recommandation et d'information : niveau de pollution atmosphérique qui a des effets limités et transitoires sur la santé en cas d'exposition de courte durée et à partir duquel une information de la population est susceptible d'être diffusée.

Seull d'alerte : niveau de pollution atmosphérique au-delà duquel une exposition de courte durée présente un risque pour la santé humaine ou de dégradation de l'environnement et à partir duquel des mesures d'urgence doivent être prises.

AUTRES SEUILS RÉGLEMENTAIRES

Décret 2010-1250 du 21/10/2010

TYPE DE SEUIL (µg/m³)	DURÉE CONSIDÉRÉE	POLLUANTS												
		OZONE (O ₁)	DIOXYDE D'AZOTE (NO ₂)	OXYDES D'AZOTE (NOX)	PARTICULES FINES (PM10)	PARTICULES FINES (PM2.5)	PLOMB	BENZÈNE	MONOXYDE DE CARBONE (CO)	DIOXYDE DE SOUFRE (SO ₂)	ARSENIC	САДМІЦМ	NICKEL	BENZO(a PYRÈNE
Valeur limite	Moyenne annuelle	1-	40	30 m	40	25	0,5	5	- 14	20 ⁽¹⁾	-	÷	+	-
	Moyenne hivernale	-	-	-	-	-	-	-	-	20 PI	-	-	-	-
	Moyenne journalière	-	-	- 1	50P4	-	-	(2)	-	12513	(2)	-	-	-
	Moyenne 8-horaire maximale du jour	-	15	-	15	-	÷	e	10 000		-	-	-	7
	Moyenne horaire	-	200 M			-	-	-		350 ^[5]	-		-	-
Objectif de qualité	Moyenne annuelle		40	-	30	10	0,25	2	- 4	50	127	2.7	0.9	-
	Moyenne journalière	-	1,5-1	- 3	(9)	-	-	1.40	- 3		1-3		-	
	Moyenne 8-horaire maximale du jour	120	1	3	1:=1	-	120	-:	ě	1	1 41	+1	10-2	1 - 2 - 1
	Moyenne horaire	-	-	3	-	-	÷	-	-	÷	-	÷	-	-
	AOT 40	6 000 billia	-	-	-		-	- 3		-	- 3	-	-	-
Valeur cible	A0T 40	18000	J-1		Jel.	-	7	33	-		-3-	E	- 5	-
	Moyenne annuelle	-	-	-	-	20	-	-	-	-	0,006	0,005	0,02	0,001
	Moyenne 8-horaire maximale du jour	120	159	-	150	-	-	-	-	-	- 17	-	-	-

Valeur limite : niveau maximal de pollution atmosphérique, fixé dans le but d'éviter, de prévenir ou de réduire les effets nocifs de la pollution pour la santé humaine et/ou l'environnement.

Objectif de qualité : niveau de pollution atmosphèrique fixé dans le but d'éviter, de prévenir ou de réduire les effets nocifs de la pollution pour la santé humaine et/ou l'environnement, à atteindre dans une période donnée.

Valeur cible : niveau de pollution fixé dans le but d'éviter, de prévenir ou de réduire les effets nocifs sur la santé humaine et/ou l'environnement dans son ensemble, à atteindre dans la mesure du possible sur une période donnée.

[|] The point and protection same are pour source as populations, en moyenne horaire.
| The point and dèclanchée la veille et le jour même et que les prévisions font craindre un nouveau risque de déclenchement pour le lendemain.

^{| 11]} pour la pretection de la végétation
| 12] à ne pas dépasser plus de 35 par an (percentile 90,4 annuel)
| 13] à ne pas dépasser plus de 39 par an (percentile 97,2 annuel)
| 14] à ne pas dépasser plus de 18h par an (percentile 99,8 annuel)
| 15] à ne pas dépasser plus de 24h par an (percentile 99,7 annuel)
| 16] pour une protection sanitaire pour toute la population, en moyenne horaire
| 17] en moyenne sur 5 ans, calculé à partir des valeurs enregistrées sur 1 heure de mai à juillet
| 18] pour la protection de la santé humaine : maximum journalier de la moyenne sur 8 heures, à ne pas dépasser plus de 25 j par a de la moyenne sur 8 heures, à ne pas dépasser plus de 25 i par an en moyenne sur 3 ans

annexe 6: laboratoires d'analyses

Analyses de filtres et des retombées métaux

IANESCO 6, rue Carol Heitz BP 90974 86038 POITIERS CEDEX Accrédité par le COFRAC au titre de la norme NF EN ISO/CEI 17025 : 2005.

Analyse des filtres chlorures

ALPA CHIMIES
49, rue Mustel
CS 34063
76022 ROUEN CEDEX 3
Accrédité par le COFRAC au titre de la norme NF EN ISO/CEI 17025 : 2005.

Analyse des retombées dioxines et furanes

Micropolluants Technologies SA 4, rue de Bort-les-Orgues ZAC de Grimont BP 40010 57070 SAINT-JULIEN-LES-METZ

Accrédité par le COFRAC au titre de la norme NF EN ISO/CEI 17025 : 2005 et par le ministère du développement durable pour la mesure des concentrations en dioxines et furanes.

glossaire

abréviations

Aasqa Association agréée de surveillance de la qualité de l'air

Airpl.lab Laboratoire d'étalonnage d'Air Pays de la Loire

As arsenic Cd cadmium

CO monoxyde de carbone
CO2 dioxyde de carbone

COV composés organiques volatils

CTVD Centre de Traitement et de Valorisation des Déchets

Cu cuivre

FDMS Filter dynamics measurement system

Fe fer

I-TEQ équivalent toxiques dioxines et furanes

LCSQA laboratoire central de surveillance de la qualité de l'air

ng nanogramme (= 1 milliardième de gramme)

Ni nickel

NO monoxyde d'azote
NO₂ dioxyde d'azote

NOx oxydes d'azote (= dioxyde d'azote + monoxyde d'azote)

 O_3 ozone

OMS Organisation mondiale de la santé

pg picogramme

PM10 particules en suspension de diamètre aérodynamique inférieur à 10 µm
PM2,5 particules en suspension de diamètre aérodynamique inférieur à 2,5 µm

PNSE plan national santé environnement
PPA plan de protection de l'atmosphère

Ppm partie par million

PRSE plan régional santé environnement
PRQA plan régional pour la qualité de l'air

PSQA programme de surveillance de la qualité de l'air

SO₂ dioxyde de soufre

TEOM tapered element oscillating microbalance

TU temps universel

US EPA Agence américaine de protection de l'environnement

UVE Unité de valorisation énergétique

μg microgramme (= 1 millionième de gramme)

Zn zinc

définitions

AOT40 somme des différences entre les moyennes horaires supérieures à 80 $\mu g/m^3$ et

80 μ g/m³, calculée sur l'ensemble des moyennes horaires mesurées entre 8 h et 20 h de

mai à juillet

heure TU heure exprimée en Temps Universel (= heure solaire)

métaux règlementés arsenic, cadmium, nickel, plomb

moyenne 8-horaire moyenne sur 8 heures

niveau de pollution respecté par x % des données de la série statistique considérée percentile x

pourcentage de données valides sur une période considérée taux de

représentativité

seuil de

valeurcible niveau de pollution fixé dans le but d'éviter, de prévenir ou de réduire les effets nocifs

sur la santé humaine et/ou l'environnement, à atteindre là dans la mesure du possible

sur une période donnée

objectif de qualité niveau de pollution atmosphérique fixé dans le but d'éviter, de prévenir ou de réduire

les effets nocifs de la pollution pour la santé humaine et/ou l'environnement, à

atteindre dans une période donnée

valeur limite niveau maximale de pollution atmosphérique, fixé dans le but d'éviter, de prévenir ou

de réduire les effets nocifs de la pollution pour la santé humaine et/ou l'environnement

niveau de pollution atmosphérique qui a des effets limités et transitoires sur la santé en recommandation et

cas d'exposition de courte durée et à partir duquel une information de la population est information susceptible d'être diffusée

seuil d'alerte niveau de pollution atmosphérique au-delà duquel une exposition de courte durée

présente un risque pour la santé humaine ou de dégradation de l'environnement et à

partir duquel des mesures d'urgence doivent être prises

airpays de la loire

5 rue Edouard Nignon – CS 70709 – 44307 Nantes cedex 3

Tél + 33 (0)2 28 22 02 02Fax + 33 (0)2 40 68 95 29 **contact@airpl.org**

